If it's not what You are looking for type in the equation solver your own equation and let us solve it.
128x^2-50x=0
a = 128; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·128·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*128}=\frac{0}{256} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*128}=\frac{100}{256} =25/64 $
| 2(x-4)=8=3x-8 | | 1+12(1-2x)=8+11(1-2x) | | 15(4x+3)=7 | | 5t*(-5)=150 | | 7-2y=1+1y | | -2m+9(m-6)=-2+3(m+8) | | F(x)=315000(1.02)^20 | | X^2+12x=84 | | 7x=14-x | | -4=3+x/7 | | 9=3n+6.n= | | -v/7=25 | | 2x-1=8-2x | | 7-2y=1+2y | | 6t*(-2)=144 | | 5x-15=-80 | | 9=3n+6n= | | 1.7n=13 | | 6t*(-3)=198 | | -61=d+(+ | | 6(n-2)=12(n-12) | | 6c+17=83 | | x+(x+74)=180 | | 10(-11-5x)+12x=-(2x+5)+3 | | 10y+100=10/4 | | 4^x^-2×27^x=3 | | -3+4=5x-20 | | -2r+7r=-3(-3+6r)-3(r+3) | | -48r-5r-(-34r)+-17=2 | | 8y =5 | | 1/5x-9=7 | | -10(1-5n)=-10(-4n-4) |